
Combinatorial Networks
Week 3, Thursday

Ramsey Number for graphs

• Definition. For integer k ≥ 2 and integers s1, s2, ..., sk ≥ 2, the Ramsey numberRk(s1, ..., sk)
is the least integer n such that any k-edge coloring of Kn has a clique Ksi in color i.

• Exercise. Rk(s1, ..., sk) <∞.
(1) (i) If k is even, then

Rk(s1, ..., sk) ≤ R k
2
(R(s1, s2), ..., R(sk−1, sk));

(ii) If k is odd, then
Rk(s1, ..., sk) = Rk+1(s1, ..., sk, 2).

(2) Rk(s1, ..., sk) =
∑

iRk(s1, ..., si − 1, ..., sk).

• Exercise. 2k ≤ Rk(3, ..., 3) ≤ (k + 1)!.
(Remind: For the first inequality, consider bipartite graph).

Ramsey Number for hypergraphs

• Definition. Let V be a finite set, 2V = {A ⊂ V },
(
V
r

)
= {A ⊂ V : |A| = r}, G =

(V, any collection of subsets of V ) is called a hypergraph, and we call H = (V,E), where
E ⊂

(
V
r

)
is a r-uniform hypergraph.

• Note: 2-uniform hypergraph = graph.

• complete r-uniform hypergraph is K
(r)
n = (V,

(
V
r

)
), where |V | = n.

• An independent set in r-uniform hypergraph H is a subset S of vertices containing NO
hyper edge.

• A clique in H is a set of vertices which induced a complete r-uniform hypergraph.

• Definition. The hypergraph Ramsey number R(r)(s, t) is the least n such that any 2-edge-

coloring of K
(r)
n has a blue K

(r)
s or a red K

(r)
t . The Ramsey number R(r)(s1, ..., sk) is the

least n such that any k-edge-coloring of K
(r)
n has a monochromatic clique K

(r)
si (with color

i).

• Theorem. For any s, t ≥ r, the Ramsey number R(r)(s, t) < ∞. In fact, we prove
R(r)(s, t) ≤ R(r−1)(R(r)(s− 1, t), R(r)(s, t− 1)) + 1.

• Proof : By induction on r, s, t.
Base case,

R(2)(s, t) <∞, R(r)(s, r) = s <∞, R(r)(r, t) = t <∞.

Inductive step: Let n = R(r−1)(R(r)(s−1, t), R(r)(s, t−1))+1, consider any 2-edge-coloring

of K
(r)
n and an vertex v, H = (V −{v},

(
V−{v}
r−1

)
) is a complete (r− 1)-uniform hypergraph.

Define a 2-edge-coloring on H by: A ∈ E(H) is colored blue if and only if A
⋃
{v} is blue
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in r-uniform hypergraph K
(r)
n .

Since n− 1 = R(r−1)(R(r)(s− 1, t), R(r)(s, t− 1)), this 2-edge-coloring on complete (r − 1)-

uniform hypergraph H has a blue K
(r−1)
R(r)(s−1,t) or a red K

(r−1)
R(r)(s,t−1).

Case 1: There is a blue K
(r−1)
R(r)(s−1,t) on V − {v}, let T = R(r)(s− 1, t). For any A ∈

(
T

r−1
)
,

A
⋃
{v} is blue in K

(r)
n . Consider complete r-uniform hypergraph in T and the restricted

2-edge-coloring of K
(r)
n on T . Since T = R(r)(s− 1, t), this 2-edge-coloring has a blue K

(r)
s−1

or a red K
(r)
t . In the latter case, we find a red K

(r)
t in K

(r)
n , done; In the former case, we

have a blue K
(r)
s−1, adding v to the set, we get a blue K

(r)
s , also done.

Case 2 is similar.

• Theorem. R(r)(s1, ..., sk) <∞.

An application of 4-uniform hypergraph on geometry

• Definition. In Euclidean space, a set P ⊂ R2 is convex, if for any two vertices x, y ∈ P ,
the line segment connecting x and y are also contained in P .

• Definition. The convex hull of a set P ⊂ R2 is the smallest convex set containing P .

• Definition. A set P ⊂ R2 is in a convex position if NO points x ∈ P is in the convex hull
of the other points in P .

• Definition. A set P ⊂ R2 is in a general position if NO three points are in a line.

• Fact 1. Among any 5 points in general position of the plane, there are always 4 points
which are in convex position.

• Proof. Consider the convex hull of 5 points. If its convex polygon has 4 or 5 points on
it, then we are done, so the convex polygon is a 4abc. Consider the other two points x, y
which are inside 4abc. Consider xy-line, it must intersect two edges of 4abc, say ab and
bc, then x, y, b, c are in convex position.

• Fact 2. For any m points, if any 4 points of them are in convex position, then these m
points are in convex position.

• Proof. Support NOT. There is a point a is contained in the convex hull of the other
m− 1 points. Consider any triangulation of (m− 1)-polygon, there is a 4ijk contains a, a
contradiction.
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