Combinatorial Networks
Week 3, Thursday

Ramsey Number for graphs

e Definition. For integer k£ > 2 and integers sy, s2, ..., s > 2, the Ramsey number Ry (s1, ..., Sk)
is the least integer n such that any k-edge coloring of K,, has a clique K, in color i.

e Exercise. Ry(s1,...,sk) < 00.
(1) (i) If k is even, then

Ry(s1,...,s1) < Rg(R(Sl,Sz), o R(sk—1,5K));

(ii) If k is odd, then
Rk(317 ceey Sk) = Rk—‘rl(sh -5 Sk 2)
(2) Rk(sl, ceny Sk) = Zl Rk(sh ey S — 1, coey Sk).
e Exercise. 28 < Ry(3,...,3) < (k+ 1)
(Remind: For the first inequality, consider bipartite graph).

Ramsey Number for hypergraphs
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e Definition. Let V be a finite set, 2V = {A C V},(Y) ={A CV |4
(V, E), where

(V,any collection of subsets of V') is called a hypergraph, and we call H =
EC (Z) is a r-uniform hypergraph.

e Note: 2-uniform hypergraph = graph.

e complete r-uniform hypergraph is Kq(f) =(V, (V)), where |V| =n.
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e An independent set in r-uniform hypergraph H is a subset S of vertices containing NO
hyper edge.

e A clique in H is a set of vertices which induced a complete r-uniform hypergraph.

e Definition. The hypergraph Ramsey number R")(s,t) is the least n such that any 2-edge-

coloring of Kq(f) has a blue Kér) or a red Kt(T). The Ramsey number R(")(sy, ..., s;) is the

least n such that any k-edge-coloring of Kq([) has a monochromatic clique K §f) (with color

i).

e Theorem. For any s,t > r, the Ramsey number R(")(s,t) < oco. In fact, we prove
R (s,t) < RCED(RM (s —1,t), R (s,t — 1)) + 1.

e Proof : By induction on r, s, t.
Base case,
R®(s,t) < 00, R (s,r) = s < 00, R (r,t) = t < .

Inductive step: Let n = RC~D(R"(s—1,t), R")(s,t—1)) + 1, consider any 2-edge-coloring
of K" and an vertex v, H=(V —{v}, (VT__{{)})) is a complete (r — 1)-uniform hypergraph.
Define a 2-edge-coloring on H by: A € E(H) is colored blue if and only if A(J{v} is blue



in r-uniform hypergraph Kff).
Since n — 1 = RU"D(RM (s —1,t), R")(s,t — 1)), this 2-edge-coloring on complete (r — 1)-

uniform hypergraph H has a blue K 1(,;:)1(1_1, p OF & red Kg(:f& e
Case 1: There is a blue Kz(«zr<:)1()sf1,t) on V —{v}, let T = R (s —1,t). For any A € (gl),

AJ{v} is blue in K. Consider complete r-uniform hypergraph in 7" and the restricted
2-edge-coloring of KT(LT) on T. Since T = R(") (s — 1,t), this 2-edge-coloring has a blue K @1
or a red Kt(r). In the latter case, we find a red Kt(r) in K,(f), done; In the former case, we

have a blue KéT_)I, adding v to the set, we get a blue Ks(r), also done.
Case 2 is similar. |

e Theorem. R(T)(sl,...,sk) < 0.

An application of 4-uniform hypergraph on geometry

e Definition. In Euclidean space, a set P C R? is convez, if for any two vertices z,y € P,
the line segment connecting x and y are also contained in P.

e Definition. The conver hull of a set P C R? is the smallest convex set containing P.

e Definition. A set P C R? is in a convex position if NO points z € P is in the convex hull
of the other points in P.

e Definition. A set P C R? is in a general position if NO three points are in a line.

e Fact 1. Among any 5 points in general position of the plane, there are always 4 points
which are in convex position.

e Proof. Consider the convex hull of 5 points. If its convex polygon has 4 or 5 points on
it, then we are done, so the convex polygon is a Aabc. Consider the other two points z,y
which are inside Aabc. Consider xy-line, it must intersect two edges of Aabe, say ab and
bc, then x,y, b, c are in convex position. |

e Fact 2. For any m points, if any 4 points of them are in convex position, then these m
points are in convex position.

e Proof. Support NOT. There is a point a is contained in the convex hull of the other
m — 1 points. Consider any triangulation of (m — 1)-polygon, there is a Aijk contains a, a
contradiction. |



